Bouguer and La Condamine thus had spent nearly a decade working toward a result they didn't wish to find only to learn now that they weren't even the first to find it. Listlessly, they completed their survey, which confirmed that the first French team was correct. Then, still not speaking, they returned to the coast and took separate ships home.
因此,布格和孔達米納花了將近10年時間,得出了一個他們不希望得出的結果,而且發現這個結果還不是他們第一個得出的。他們沒精打采地結束了測量工作,只是證明第一個法國小組是正確的。然后,他們依然默不作聲地回到海邊,分別乘船踏上了歸途?!?/p>
Something else conjectured by Newton in the Principia was that a plumb bob hung near a mountain would incline very slightly toward the mountain, affected by the mountain's gravitational mass as well as by the Earth's. This was more than a curious fact. If you measured the deflection accurately and worked out the mass of the mountain, you could calculate the universal gravitational constant—that is, the basic value of gravity, known as G—and along with it the mass of the Earth.
牛頓在《原理》中作的另一個推測是:一根掛在大山附近的鉛錘線,會受到大山和地球引力質量的影響,稍稍向著大山傾斜。這個推測很有意思。要是你精確測量那個偏差,計算大山的質量,你可以算出萬有引力的常數--即引力的基本值,叫做G--同時還可以算出地球的質量。
Bouguer and La Condamine had tried this on Peru's Mount Chimborazo, but had been defeated by both the technical difficulties and their own squabbling, and so the notion lay dormant for another thirty years until resurrected in England by Nevil Maskelyne, the astronomer royal. In Dava Sobel's popular book Longitude, Maskelyne is presented as a ninny and villain for failing to appreciate the brilliance of the clockmaker John Harrison, and this may be so, but we are indebted to him in other ways not mentioned in her book, not least for his successful scheme to weigh the Earth. Maskelyne realized that the nub of the problem lay with finding a mountain of sufficiently regular shape to judge its mass.
布格和孔達米納在秘魯的欽博拉索山做過這種試驗,但是沒有成功,一方面是因為技術難度很大,一方面是因為他們內部吵得不可開交。因此,這件事被暫時擱置下來,30年后才在英國由皇家天文學家內維爾·馬斯基林重新啟動。達娃·索貝爾在她的暢銷書《經線》中,把馬斯基林說成是個傻瓜和壞蛋,不會欣賞鐘匠約翰·哈里森的卓越才華,這話也許沒錯兒。但是,我們要在她書里沒有提到的其他方面感激馬斯基林,尤其要感激他制定了稱地球質量的成功方案。馬斯基林意識到,問題的關鍵在于找到一座形狀規則的山,能夠估測它的質量。