A study in the journal Nature Materials details the creation of a nanowire-based technology that absorbs solar energy at comparable levels to currently available systems while using only 1 percent of the silicon material needed to capture photons. Cynthia Graber reports
《自然材料》上一項研究詳述了一項基于納米線材技術的新發明----和當前技術相比,吸收太陽能的水平一樣,但是只需要消耗1%的硅料來俘獲光子。
Imagine a world where sunlight can be captured to produce electricity anywhere, on any surface. The makers of thin-film flexible solar cells imagine that world too. But a big problem has been the amount of silicon needed to harvest a little sunshine.
想想這樣一個世界:在任何地方,任何表面,太陽光都可以被吸收以產生電能。薄膜柔性太陽能電池制造商也在構想這樣的世界。但是有個大問題:為了吸收很少的太陽光,需要耗費大量的硅料。(注:高純度硅料,成本高)
Now, researchers [led by Harry A. Atwater] at Caltech say they’ve designed a device* that gets comparable solar absorption while using just one percent of the silicon per unit area that current solar cells need. The work was published in the journal Nature Materials.
現在,加州理工的研究者們(領導是:Harry A. Atwater)說他們設計了一個裝置(注1)取得同樣的太陽能吸收水平,但每個單元只需要當前太陽能電池1%的硅料。成果發表在《自然材料》雜志上。
The research team tried silicon wire arrays instead of traditional silicon panels. These wires have been shown to do a good job converting sunlight to usable energy on the nanoscale. But the scientists had to create wires a thousand times longer.
研究團隊嘗試硅線陣列而不是傳統的硅版。在納米級別上,這些硅線可以很好的把太陽能轉換成可用的能量。但是科學家們必須研發出1000倍長的線材。
Light bounces around within the wires and is eventually absorbed when it hits at the correct angle. But there was a problem: too much light was leaking out. Adding nanoparticles of alumina kept much more of the light scattering until it got absorbed. The result is a system that virtually matches silicon wafer light absorption and may be more efficient at converting light to electricity, while using a tiny fraction of the material.
光線在線材附近來回反射,當它恰好以某個角度入射,最終將被吸收。但是問題在于:大量的光線跑掉了。加入鋁的納米粒子使更多的光線散射直到它被吸收。結果是一個這樣一個系統:只使用一丁點兒硅料,但它和硅片的吸收水平一樣,也可能更有效的進行光電轉換。