答案:D
解析:
If x>0 and y>0, and if 3^(2x) = 27^(2y), then rewriting 27 as 3^3 gives 3^(2x) = 27^(2y) = (3^3)^(2y) = 3^(3(2y)). It follows that 3^(2x) = 3^(3(2y)) = 3^(6y), and so 2x = 6y. This last equation is equivalent to x = 3y.
您現(xiàn)在的位置: 首頁 > SAT > SAT每日一題 > 正文
答案:D
解析:
If x>0 and y>0, and if 3^(2x) = 27^(2y), then rewriting 27 as 3^3 gives 3^(2x) = 27^(2y) = (3^3)^(2y) = 3^(3(2y)). It follows that 3^(2x) = 3^(3(2y)) = 3^(6y), and so 2x = 6y. This last equation is equivalent to x = 3y.
重點(diǎn)單詞 | 查看全部解釋 | |||
equation | [i'kweiʃən] |
想一想再看 n. 相等,方程(式), 等式,均衡 |
聯(lián)想記憶 | |
equivalent | [i'kwivələnt] |
想一想再看 adj. 等價(jià)的,相等的 |
聯(lián)想記憶 | |
multiple | ['mʌltipl] |
想一想再看 adj. 許多,多種多樣的 |
聯(lián)想記憶 |